Supply Chain Normative Models Necessarily Driver-Based

- Problem Statement: Find the least cost supply chain to fulfill a given, fixed demand. The solution includes:
 - Sites: physical locations
 - Missions: what activities are performed at the sites
 - Capacities: what are the volumes of each activity

Relevant Definitions:

- Cost function: mathematical expression of how a cost changes with changes in the level of an activity relating to that cost
- Cost object: work unit (e.g., product, service, customer, function, organizational subdivision) for which cost data is desired
- Cost driver: measure of activity that causes incurrence of cost in a cost object

Supply Chain Mixed Integer & Linear Programming (MILP) Models Necessarily Driver-Based

Model Structure

- Since solution quantities within network are unknown, costs must be expressed as function of product volumes, i.e., cost functions
- Cost functions are not continuous; they are linear, fixed, stepped or combination (see Fig. #1)
- All costs (fixed/variable, indirect/common and direct) must be associated, directly, with one of the six types of cost objects
 - Products/services/projects, including raw material, WIP, and finished
 - created, directly, by activities
 - Activities/processes
 - create products
 - Facilities
 - contain activities at a geographic location
 - Include the costs for opening and closing

Fig. #1: Cost Function

Supply Chain Mixed Integer & Linear Programming Models Normative and Necessarily Driver-Based

Model Structure

- All costs (fixed/variable, indirect/common and direct) must be associated, directly, with one of the six types of cost objects
 - Business sustaining/virtual facility
 - all other costs
 - Customers
 - consume finished products at a geographic location
 - Links
 - connect activities and facilities
- The six cost objects are arranged in a cost "tree structure" (see Fig. #2)
- Facilities and sustaining costs are placed in layers called echelons (see Fig. #3)
 - From raw material suppliers to customers

Fig. #2: Cost "tree structure"

Supply Chain MILP Models Necessarily Driver-Based

Model Structure

- Since solution quantities are unknown; costs must be expressed as function of product volumes (i.e., cost functions; see #1)
- Cost functions are linear, fixed, stepped or combination
- All cost (viz, fixed/variable, indirect/common and direct) must be associated, directly, with one of the six types of cost objects
- A variety of constraints can be included in the model (see #2)
 - Capacity is one of the most important
 - Frequently, placed on cost functions (see #1)
- A variety of capacity solutions can be modeled, simultaneously (e.g., Inventory build ahead vs. more equipment vs. OT)

Fig. #4: Examples of Constraints

- Production and process rates
- Transit time vs. customer response time
- Order fill rates
- Losses
 - transportation
 - process
- Capacities (e.g., bound 3: see Fig #1)
- Facility utilization rate
- Maximum number of facilities
- Minimum activity quantity (see Fig. #1)
 - computed, forced in, forced out